Implementasi Deep Learning sebagai Media Evaluasi Keterampilan Gerak Dasar Atletik dalam Pendidikan Jasmani
DOI:
https://doi.org/10.57008/jjp.v5i04.1893Keywords:
Deep Learning, keterampilan gerak dasar, atletik, pendidikan jasmani, CNNAbstract
Penelitian ini bertujuan untuk mengimplementasikan teknologi Deep Learning sebagai alat evaluasi keterampilan gerak dasar atletik dalam pembelajaran pendidikan jasmani. Penelitian menggunakan metode quasi experiment dengan 60 mahasiswa Pendidikan Jasmani yang dibagi menjadi dua kelompok, yaitu kelompok eksperimen dan kelompok kontrol. Sistem evaluasi dikembangkan menggunakan algoritma Convolutional Neural Network (CNN) yang dilatih untuk mengenali tiga jenis gerak dasar atletik: lari, lompat, dan lempar. Hasil pengujian menunjukkan bahwa sistem memiliki akurasi pengenalan gerak sebesar 95,2%, precision sebesar 94,1%, dan recall sebesar 93,6%. Berdasarkan uji paired sample t-test, terdapat peningkatan signifikan pada nilai keterampilan mahasiswa kelompok eksperimen dari 73,1 menjadi 87,4 (p < 0,05), sedangkan kelompok kontrol meningkat dari 72,8 menjadi 79,2. Tingkat kepuasan dosen terhadap sistem mencapai 90,7%, dengan kategori sangat baik. Hasil ini menunjukkan bahwa Deep Learning efektif digunakan sebagai media evaluasi yang objektif, efisien, dan akurat, serta menjadi inovasi dalam proses pembelajaran dan penilaian pendidikan jasmani.
References
Chen, Q., & Dong, M. (2022). Design of assessment judging model for physical education professional skills course based on convolutional neural network and few-shot learning. PubMed. Retrieved from https://pubmed.ncbi.nlm.nih.gov/35669639/
Dong, P., Mao, X., Fan, L., Wan, W., & Sun, J. (2023). CPFES: Physical fitness evaluation based on Canadian agility and movement skill assessment. arXiv preprint. Retrieved from https://arxiv.org/abs/2308.14324
Eddy, L., Hill, L. J. B., Mon-Williams, M., & Barnett, L. M. (2021). Fundamental movement skills and their assessment in primary schools from the perspective of teachers. Measurement in Physical Education and Exercise Science, 25(3), 236–249. https://doi.org/10.1080/1091367X.2021.1886118
Fitriady, G., Alfarizi, M., & Saputra, S. A. (2022). Optimization of movement skills assessment in physical education learning using online self and peer assessment. Journal of Science and Education, 3(2), 159–164. Retrieved from https://jse.rezkimedia.org/index.php/jse/article/download/168/46
Hasyim, A. H., Haris, I. N., & Yulianto, A. G. (2024). Analysis of evaluation models in physical education learning: A systematic literature review. Indonesian Journal of Sport Management, 4(1), 98–105. Retrieved from https://www.ejournal.unma.ac.id/index.php/ijsm/article/view/8594
Jia, Y., Abdullah, N., Eliza, H., & Rahman, M. (2025). A narrative review of deep learning applications in sports performance analysis: Current practices, challenges, and future directions. BMC Sports Science, Medicine and Rehabilitation, 17(249). https://doi.org/10.1186/s13102-025-01294-0
Joschtel, B., Gomersall, S. R., Tweedy, S., & Esterman, A. (2021). Fundamental movement skill proficiency and objectively measured physical activity in children with bronchiectasis: A cross-sectional study. BMC Pulmonary Medicine, 21(1), 269. https://doi.org/10.1186/s12890-021-01637-w
Kurniawan, D. M. S. (2021). Pengaruh level physical activity anak terhadap fundamental movement skills: Systematic literature review (Master’s thesis, Universitas Pendidikan Indonesia). Retrieved from https://repository.upi.edu/60820/
Lander, N., Barnett, L., Brown, H., & Telford, A. (2015). Physical education teacher training in fundamental movement skills makes a difference to instruction and assessment practices. Journal of Teaching in Physical Education, 34(4), 548–556. https://doi.org/10.1123/jtpe.2014-0044
Leddy, C., O’Neill, J., Smith, D., & Peters, M. (2024). The application of machine and deep learning for technique and skill analysis in swing and team sport-specific movement: A systematic review. International Journal of Computer Science in Sport, 23(1), 110–145. https://doi.org/10.2478/ijcss-2024-0007
Lian, D. (2024). Deep learning in sports skill learning: A case study and performance evaluation. EAI Endorsed Transactions on Pervasive Health and Technology. Retrieved from https://publications.eai.eu/index.php/phat/article/view/5809
Liu, X. (2025). Evaluation model of physical education teaching effect based on machine learning algorithm with biomechanical integration. Molecular & Cellular Biomechanics. Retrieved from https://ojs.sin-chn.com/index.php/mcb/article/view/248
Monterrosa Quintero, A., García, D., & Arias, F. (2024). Evaluación del aprendizaje en educación física: Tendencias y desafíos actuales. Journal of Physical Education and Sports Pedagogy, 12(2), 133–142.
Perdima, F. E., Hadiwinarto, & Balint, G. (2022). Evaluation of learning in physical education: A bibliometric analysis and future trends. Journal Sport Area, 7(1), 160–170. Retrieved from https://journal.uir.ac.id/index.php/JSP/article/view/8059
Quan, H., & Zhao, L. (2023). Research on intelligent analysis of human movement based on deep learning algorithms. Journal of Sports Science and Technology, 11(4), 45–52.
Sun, H. (2024). Improving the accuracy of recognition and evaluation of technical movements of basketball players using deep learning algorithms. Journal of Electrical Systems, 20(2), 3311–3322. Retrieved from https://journal.esrgroups.org/jes/article/view/3111
Wang, T. (2024). Research on physical education teaching in universities based on deep learning. Applied Mathematics and Nonlinear Sciences, 9(1), 321–334. https://doi.org/10.2478/amns-2024-0319
YouYang, L. (2024). Evaluation of athlete physical fitness based on deep learning. Scalable Computing: Practice and Experience, 25(2), 3222–3231. Retrieved from https://scpe.org/index.php/scpe/article/view/3222
Zakia, A., Barlian, E., Firdaus, K., & Andika, H. (2023). Improving fundamental locomotor skills of elementary school students in Padang City through the Kids Athletics model. International Journal of Research and Review, 10(8), 691–696. Retrieved from https://www.ijrrjournal.com/IJRR_Vol.10_Issue.8_Aug2023/IJRR-Abstract90.html
Zhang, J., Li, F., & Zhou, H. (2024). Application of AI-based feedback systems for motor skill learning in physical education. Journal of Intelligent Education Systems, 8(2), 120–132.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 JURNAL JENDELA PENDIDIKAN

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





