Penerapan Metode Newton Raphson Untuk Pendugaan Parameter Regresi Non Linear Cobb-Douglas
DOI:
https://doi.org/10.57008/jjm.v2i02.916Keywords:
Pendugaan parameter, Regresi Nonlinier Cobb-Douglas, Metode Maksimum Likelihood, Deret Taylor, Newton RapshonAbstract
Inference in Cobb-Douglas model problems is a form of statistical inference that helps solve inference problems that involve a combination of several distributions. One form of distribution is a parametric distribution, and the other is a nonparametric distribution. To model the nonlinear Cobb-Douglas distribution and perform inference, such as determining test statistics, you can use maximum likelihood and then continue using the Newton rapshon method. Parameter estimates for the Cobb-Douglas nonlinear regression model were determined using the maximum likelihood method which was assumed to be normally distributed. then analyze the estimator first to obtain the Cobb-Douglas regression model estimator using the second order Taylor series approach to obtain the Newton Rapshon method. Based on the research results, it was found that the general form of parameter estimation for the Cobb-Douglas nonlinear regression model using the Newton-Raphson iterative method is:
-
So the parameter estimator is in scalar form.
References
Ahfazh “Estimasi Parameter pada Fungsi Produksi Cobb-Douglas Non-Linier Menggunakan Metode Least Square” Jurnal Kubik Publikasi Ilmiah Matematika 1 (1): 1-9
Aziz, Abd . 2006 Ekonometrika teori dan praktek eksperimen dengan Matlab. Malang: UIN Malang press.
Bambang. 2002 Metode numerik dilengkapi dengan program komputer. Yogyakarta:
Beta Offset.
Draper, Norman and Smith, Harry. 1992. Analisi Regresi Terapan. Jakarta: PT. Gramedia Pustaka Utama
Hasan, Iqbal. 2002. Pokok-Pokok Materi Statistik 1 (Statistik Deskriptif). Jakarta: Bumi Aksara.
Mood, M Alexander dkk.1986. Introduction to the Theory of Statistics. Mcgraw-Hill Book Company.
Rorres Anton.2004. Aljabar linier elermenter Versi Aplikasi. Jakarta: Erlangga
Sembiring, R.K. 1995. Analisis Regresi. Bandung: Institut Teknologi Bandung.
Soelistyo. 2001. Dasar-Dasar Ekonometrika. Yogyakarta: BPFE
Spiegel, Murray R.1984. Kalkulus Lanjutan. Jakarta: Erlangga.
Steel, Robert G.D. and Torri, James H. 1989. Prinsip dan Prosedur Statistika Suatu Pendekatan Biometrik. Jakarta: Gramedia
Yitnosumarto, Suntoyo. 1990. Dasar-Dasar Statistika. Jakarta : C.V Rajawali
Zulaikah, Ririn. (2014) ”Estimasi Parameter Pada Model Statistik Nonlinier Secara Least Square ” Malang: Digilib Uin Malang.