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Abstract: Inference in Cobb-Douglas model problems is a form of statistical inference that helps 
solve inference problems that involve a combination of several distributions. One form of 
distribution is a parametric distribution, and the other is a nonparametric distribution. To model 
the nonlinear Cobb-Douglas distribution and perform inference, such as determining test statistics, 
you can use maximum likelihood and then continue using the Newton rapshon method. Parameter 
estimates for the Cobb-Douglas nonlinear regression model were determined using the maximum 

likelihood method which was assumed to be normally distributed. then analyze the estimator 2
    

first to obtain the Cobb-Douglas regression model estimator using the second order Taylor series 
approach to obtain the Newton Rapshon method. Based on the research results, it was found that 
the general form of parameter estimation for the Cobb-Douglas nonlinear regression model using 
the Newton-Raphson iterative method is: 
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So the parameter estimator is in scalar form. 

Keywords: Parameter estimation, Cobb-Douglas Nonlinear Regression, Maximum Likelihood 
Method, Taylor Series, Newton Rapshon. 

Abstrak: Inferensi dalam masalah model Cobb-Douglas adalah bentuk inferensi statistik yang 
membantu memecahkan masalah inferensi yang melibatkan kombinasi beberapa distribusi.Salah 
satu bentuk distribusinya adalah distribusi parametrik, dan yang lainnya adalah distribusi 
nonparametrik. Untuk memodelkan distribusi Cobb-Douglas nonlinier dan melakukan inferensi, 
seperti menentukan statistik pengujian, dapat menggunakan maksimum likelihood dan kemudian 
melanjutkan menggunakan metode Newton rapshon. Estimasi parameter model regresi nonlinier 
Cobb-Douglas ditentukan dengan menggunakan metode maksimum likelihood yang diasumsikan 

berdistribusi normal. kemudian menganalisis estimator 2
  terlebih dahulu untuk mendapatkan 

estimator model regresi Cobb-Douglas dengan menggunakan pendekatan deret Taylor ordo dua  
sehingga di peroleh metode Newton Rapshon. Berdasarkan hasil penelitian, didapatkan bahwa 
bentuk umum estimasi parameter model regresi nonlinier Cobb-Douglas menggunakan metode 
iterative Newton-Raphson adalah 
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Sehingga penduga parameter 

^
2  berbentuk skalar.   

Kata kunci: Pendugaan parameter, Regresi Nonlinier Cobb-Douglas, Metode Maksimum 
Likelihood, Deret Taylor, Newton Rapshon. 
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PENDAHULUAN  

Secara umum statistika merupakan ilmu yang menggambarkan proses perencanaan, 
pengumpulan, analisis, interpretasi, dan penyajian data. Statistika merupakan ilmu yang 
berkaitan dengan data, namun statistika merupakan hasil penerapan algoritma statistika 
terhadap data, informasi, atau data. Statistik deskriptif merupakan ilmu statistika yang 
dapat digunakan untuk mendeskripsikan data.  

Statistik mulai berkembang karena pemerintah dan pihak yang berwenang 
memerlukan cara untuk mengumpulkan informasi tentang data ekonomi, demografi, dan 
politik suatu negara. Lebih lanjut, statistika adalah kumpulan konsep dan metode 
pengumpulan data, menyajikannya dalam format yang mudah dipahami, menganalisis 
data, dan menarik kesimpulan berdasarkan hasil analisis data dalam situasi 
ketidakpastian dan variasi. Karena statistik didasarkan pada pemikiran probabilistik, 
maka hasil pengolahan data dengan metode statistik bukanlah hasil yang pasti, melainkan 
hasil perkiraan ketidakpastian variasi yang terjadi pada suatu fenomena tertentu. 
Keunikan statistik adalah terjaminnya tingkat ketidakpastian tertentu. Dalam penelitian 

ini, penulis membahas keunikan statistik dengan memperkirakan parameter  dan 2  . 

Estimasi parameter biasanya dilakukan pada sekumpulan data sampel untuk 
mendapatkan pendekatan trend terhadap variabel independen dari persamaan fungsi 
respons. Hal ini terdiri dari penciptaan kondisi khusus (optimal) pada fungsi tujuan. 
misalnya estimasi menggunakan metoda maksimum likelihood. Hal ini dimaksudkan untuk 
memaksimalkan keadaan fungsi tujuan sebagai fungsi probabilitas gabungan dan 

didapatkan nilai parameter  dan 2 . 

Upaya ini umum dilakukan dan relatif mudah untuk model linier. Ini adalah cara 
untuk mengubah (mengurangi) jumlah model non linier ke bentuk linier. Salah satunya 
adalah model regresi non linier Cobb-Douglas. Diperlukan teknik yang tepat untuk 
memperkirakan parameter model Cobb-Douglas. Meskipun ada banyak cara untuk 
memperkirakan parameter model nonlinier, salah satu metode klasik untuk 
memperkirakan model regresi nonlinier adalah metode Newton-Raphson. 

Dalam model regresi non linier Cobb-Douglas, estimasi parameter ditentukan secara 
iteratif. Untuk memperoleh estimasi parameter dari model eigen instrinsik, terlebih dahulu 
harus mengkonversi model nonlinier ke bentuk linier untuk memudahkan memperoleh 
estimasi parameter. Mengenai nilai observasi (variabel acak), estimasi parameter 
mengasumsikan bahwa nilai observasi berdistribusi normal. 

 
METODE 
Metode yang digunakan dalam penelitian ini adalah metode penelitian kepustakaan atau 
tinjauan pustaka. Kemudian penulis melakukan analisis estimasi Newton-Raphson 
menggunakan estimasi maksimum Likelihood dengan menganalisis model statistik non 
linier bentuk umum. 

Berdasarkan penjelasan di atas, penulis melakukan beberapa langkah untuk 
memperoleh hasil estimasi Newton-Raphson. Diantaranya adalah: 
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1. Sebagai persiapan awal untuk analisis metode estimasi Newton-Raphson, yaitu 
dengan menentukan model nonlinier Cobb-Douglas. 

2. Linierkan persamaan Cobb-Douglas sehingga diperoleh persamaan yang 
berdistribusi   normal. 

3. Carilah fungsi dengan variabel bebas dari persamaan distribusi normal. 
4. Analisis fungsi untuk mendapatkan estimasi parameter      

5. Analisis fungsi untuk mendapatkan estimasi parameter 2  

6. Setelah paramete 2   diketahui menggunakan pendekatan Taylor, maka ditentukan 
persamaan iterasi Newton-Raphson untuk persamaan non linear maksimum 

likelihood dengan menggunakan pendekatan L(  )  disekitar )1(  

7. Merumuskan model regresi Cobb-Douglas menggunakan metode Newton-Rapson. 
PEMBAHASAN 
1. Penentuan Penduga Parameter Model Regresi Nonlinier Cobb-Douglas 

Saat menggunakan metode Newton-Raphson untuk menentukan estimator 
parameter regresi Cobb-Douglas nonlinier, kita harus terlebih dahulu mengasumsikan 
variabel independen dengan distribusi yang digunakan. Penelitian ini mengasumsikan 
variabel independen   berdistribusi normal. Namun pada penelitian ini digunakan 

metode iterasi Newton-Raphson dengan estimasi maksimum likelihood (MLE) untuk 

mencari penduga L(  ) disekitar nilai awal )1( . 

a. Menentukan Penduga Parameter   Model Regresi Nonlinier Cobb-

Douglas 
Bentuk Regresi nonlinier cobb-douglas adalah sebagai berikut: 

iiii KLY 
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 21
0       (1) 

dari persamaan 3.1 dimana  ~N (0,) sehingga dapat di cari fungsi sebaran dari y dengan 
cara menjadikan fungsi logaritma 
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 Dengan menggunakan pendekatan matriks, persamaan (2) dapat ditulis dalam 
bentuk matriks sebagai: 
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Dengan demikian, Bentuk linier Regresi Nonlinier Cobb-douglas dengan  pendekatan 
matrik adalah:  
Oleh karena itu, bentuk linear dari regresi Cobb-Douglas non-linier dengan menggunakan 
pendekatan matriks adalah:  
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Oleh karena itu persamaan regresi nonlinier Cobb-Douglas diubah ke bentuk linier dan 
diambil bentuk normalnya adalah: 

  ε
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β.Y X          (5) 

Karena persamaan (5) berdistribusi normal, maka fungsi densitas dan variabel bebas  εi  

juga berdistribusi normal, sehingga fungsi distribusi peluang dari *
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Fungsi kemungkinan (L) didefinisikan sebagai fungsi kepadatan gabungan dari 
random eror( kesalahan acak). Dengan asumsi kesalahan acak bersifat independen, maka 

distribusi probabilitas Yi terhadap 
~
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Sehingga fungsi likelihood diperoleh: 
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Untuk menyelesaikan persamaan (8), dengan menggunakan logaritma natural, kita 
mendapatkan:  
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Pendekatan L(  ) disekitar )1( dengan deret taylor orde 2, yaitu 

f(xi+1) ≈  f(xi)+ f’(xi) 
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Dengan menyamakan dengan nol akan didapatkan 
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Secara umum dapat diperoleh model iterasi: 
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Namun metode Newton-Rapson tidak dapat digunakan untuk menentukan 

estimasi parameter karena estimasi parameter  
2

 karena  bersifat konstan berapapun 

perubahan nilai   maka 
2

  adalah tetap. 

SIMPULAN 

Dari  penjelasan yang sudah dibahas dapat dismpulkan bahwa: 

1. Estimasi parameter 


~

β model regresi non linier Cobb-Douglas menggunakan metode 

Newton-Raption dengan Maksimum Likelihood Estimation (MLE) adalah: 
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2. Estimasi 2̂  diperoleh dengan memaksiamlkan dan mendiferensialkan fungsi 
Likelihood, sehingga didapatkan: 
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3. Model regresi  Cobb-Douglas menggunakan metode Newton-Raphson  diperoleh 

dengan mengganti  mengganti fungsi Likelihood  dengan nilai estimasi 2̂  : 
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4. Pendugaan 2̂  untuk newton raphson adalah 
2

  
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